Каждый из металлоискателей (два предыдущих и рассматриваемый) смонтирован на печатной плате из фольгированного стеклотекстолита толщиной 1,5 мм. Платы рассчитаны на установку постоянных резисторов МЛТ-0,125.(МЛТ-025, ВС-0,125), конденсаторов КТ-1 (С2—С7 — в первом; С2, С5—С8 — во втором;

С2, СЗ, С5-С7 - в третьем), КМ-4 или К-10-7В (соответственно С8-С10; СЗ, С4, С9-С12, С15, С16; С2, СЗ, С5-С7) и К50-6 (остальные).

Для перестройки генераторов по частоте применены переменные конденсаторы с твердым диэлектриком от малогабаритных транзисторных приемников «Мир» (в первом устройстве) и «Планета» (во втором). Разумеется, возможно использование и любых других подходящих по габаритам и значениям минимальной и максимальной емкости конденсаторов, в том числе и подстроечных КПК-3 емкостью 25... 150 пФ.

Переменные резисторы R5 (рис. 4.12) и R2 (рис. 4.14) — малогабаритные любого типа.

С целью уменьшения размера смонтированных плат по высоте оксидные конденсаторы С 11 первого металлоискателя и С9 третьего установлены параллельно платам (их выводы согнуты под углом 90°). Кварцевый резонатор смонтирован на отдельной плате из стеклотекстолита, закрепленной параллельно основной со стороны деталей.

Катушки L1 металлоискателей, собранных по схемам на рис. 4.12 и 4.13, намотаны на ферритовых (600НН) кольцевых магнитопроводах типоразмера К8х6х2. В первом катушка содержит 180 витков провода ПЭЛШО 0,14 мм, во втором — 50 витков ПЭЛШО 0,2 мм. Намотка в обоих случаях равномерная по всему периметру магнитопровода. В первом устройстве катушка приклеена клеем БФ-2 непосредственно к печатной плате, во втором (из-за недостатка места) — к небольшому уголку, согнутому из листового полистирола толщиной 1,5 мм и приклеенному этим же клеем к плате.

Поисковая катушка каждого из трех металлоискателей намотана в кольце, согнутом из винилопластовой трубки внешним диаметром 15 и внутренним 10 мм. Наружный диаметр кольца первого прибора — 250, второго и третьего — 200 мм, числа витков — соответственно 100 и 50, провод — ПЭЛШО 0,27 мм. После намотки кольцо обернуто лентой из алюминиевой фольги для электрического экранирования (необходимого для устранения влияния емкости между катушкой и землей). При намотке ленты следует помнить, что электрический контакт между ее концами недопустим (в противном случае образуется замкнутый виток).

Для защиты от повреждений фольгу обматывают одним-двумя слоями поли-винилхлоридпой изоляционной ленты.

Следует отметить, что диаметр поисковой катушки может быть как меньше, так и больше указанных значений. С его уменьшением площадь зоны обнаружения сужается, но прибор становится более чувствительным к мелким предметам, с увеличением же, наоборот, зона обнаружения расширяется, а чувствительность к мелким предметам снижается. Для индикации поиска во всех приборах применены головные телефоны ТОН-2.

Питать металлоискатели можно от батареи «Крона» или 7Д-0,115, а если не смущают габариты, то и от соединенных последовательно двух батарей 3336 или шести элементов 316, 332.

Вместе с источником питания смонтированную плату и органы управления помещают в небольшую плоскую металлическую коробку (латунь, луженая жесть толщиной 0,4...0,6 мм) и закрепляют последнюю на штанге, изготовленной из дюраллюминевой трубы внешним диаметром 16...20 мм.

Универсальный металлоискатель

Металлоискатели, о которых рассказывалось ранее рассчитаны на обнаружение в основном сравнительно больших металлических предметов на расстоянии нескольких десятков сантиметров. С их помощью практически невозможно определить точное местоположение, скажем, гвоздей, скрытой проводки в стене или в полу, поскольку разрешающая способность металлоискателя низка из-за громоздкости выносной катушки (диаметр 200 мм). К примеру, с такой катушкой группа близкорасположенных гвоздей может восприниматься как некий большой предмет из металла. Кроме того, более удаленные массивные предметы могут экранировать близлежащие мелкие, например, те же гвозди в деревянном настиле на железобетонных плитах. На рис. 4.15 представлен универсальный металлоискатель, способный обнаруживать как мелкие, так и крупные металлические предметы. Он снабжен несколькими сменными катушками диаметром от 25 до 250 мм, что позволяет обнаруживать местоположение мелких предметов с точностью до миллиметров на расстоянии нескольких сантиметров, а крупные предметы — на расстоянии нескольких десятков сантиметров.

Принцип работы металлоискателя — традиционный. Он содержит эталонный генератор, собранный на логических элементах DD1.1 и DD 1.3 с частотой генерации примерно 100 кГц и перестраиваемый генератор, выполненный на элементе

91.jpg

Рис. 4.15. Универсальный металлоискатель

DD1.2 и одной из выносных катушек индуктивности, подключаемых к генератору через разъем XS1. Сигналы обоих генераторов поступают на смеситель, собранный на элементе DD1.4. К выходу смесителя через фильтр R4C4, ослабляющий высшие частоты, подключены головные телефоны (узел А2). Для получения большей громкости звука капсюли телефонов соединены последовательно.

Пока вблизи выносной (сменной или поисковой) катушки нет металла, в телефонах будет звук вполне определенной тональности, установленной переменным резистором R2. При приближении же катушки к металлическому предмету тональность звука будет изменяться. Металлоискатель питается от батареи GB1, но выключателя питания в ее цепи нет — питающее напряжение подается на микросхему через контакты 2, 4 при подключении сменной катушки.

Кроме указанной на схеме, можно применить микросхемы К561ЛА7, К561ЛА7, К564ЛЕ5. Постоянные резисторы — МЛТ-0,125, переменный R2 — СП5-2 или другой малогабаритный. Оксидный конденсатор С5 может быть К50-6, К53 1, остальные конденсаторы — КЛС, КМ Головные телефоны — ТОН-2А с регулятором громкости. Их нужно немного доработать — установить на корпусе регулятора громкости гнездо XS2 от малогабаритных телефонов (в это гнездо вставляют вилку ХР2 от таких же телефонов), удалив предварительно провод с вилкой. И, конечно, соединить капсюли последовательно.

Источник питания, батарею GB1, составляют из четырех последовательно соединенных аккумуляторов Д-0,1 или Д-0,06. Поскольку аккумуляторы со временем истощаются, для подзарядки батареи используют простое зарядное устройство (узел А4 на рис. 4.16), включаемое в разъем XS1 с помощью пятиштырьковой вилки.

92.jpg Рис. 4.16 Зарядное устройство для металлоискателя

Детали узла А1 металлоискателя, кроме разъемов, батареи и переменного резистора, смонтированы на небольшой печатной плате, которая вместе с батаре ей аккумуляторов размещена в небольшом корпусе - коробке из-под лекарств На крышке коробки крепят разъем, а через отверстие в дне пропускают двух-проводный шнур, концы проводов которого припаивают к разъему ХР2 Переменный резистор R2 крепят на боковой стенке коробки.

Сменные катушки диаметром до 100 мм изготавливают так. Сначала на оправке Необходимого диаметра наматывают обмотку, которую обматывают слоем лакоткани, а поверх — медной луженой фольгой. Начало и конец обмотки из фольги не должны касаться друг друга, поэтом между ними оставляют зазор в несколько миллиметров.

Затем из фольгированного материала изготавливают основание в виде диска, на котором пайкой крепят разъем. С внутренней стороны на основании оставляют на краю кольцевую фольгированную полоску, не замкнутую на концах, а также полоску-проводник к разъему (с этой полоской соединяют контакты 2 и 4 разъема). К основанию припаивают фольговую обмотку катушки так, чтобы зазоры обмотки и кольцевой полоски основания совпали. В случае необходимости на основании размещают конденсатор С', выводы которого подпаивают к выводам 3 и 1 разъема, т.е. подключают параллельно катушке индуктивности.

После проверки катушки (омметром) и подбора конденсатора С1 (при налаживании металлоискателя) припаивают крышку из фольгированного материала, изготовленную наподобие основания с незамкнутой кольцевой полоской

Катушки диаметром 100 мм и более можно изготовить аналогично описанным выше и соединять их с металлоискателем с помощью кабеля (обязательно экранированного) длиной 1,5...2 м. Индуктивность любой катушки должна быть примерно 1,25 мГн.

Для катушки диаметром (средним) 25 мм обмотка должна содержать 150 витков провода ПЭВ-1 0,1 мм, диаметром 75 мм — 80 витков ПЭВ-1 0,18 мм, диаметром 200 мм — 50 витков ПЭВ1 0,3 мм. Для катушек любого другого диаметра число витков приближенно определяют но формуле:

93.jpg

где W — число витков; L — индуктивность катушки, мкГн; D — средний диаметр катушки, см.

Настраивают металлоискатель в такой последовательности. После изютов-ления одной из сменных катушек, например самой малогабаритной, ее подключают к разъему XS1. Движок резистора R2 устанавливают в среднее положение и, подключив головные телефоны, подбором конденсатора СЗ добиваются звука низкого тона в них. При приближении к катушке металлического предмета тональность звука должна изменяться. Затем изготавливают катушку другого диаметра и, не припаивая крышку, подключают катушку к разъему XS1 Желательно, чтобы индуктивность катушки пролучилась на 5...10% меньше ранее изготовленной. Подбором конденсатора С1 (если это понадобится) добиваются звука примерно такой же тональности, что и в первом случае. Аналогично изготавливают и настраивают катушки других размеров При зарядке батареи аккумуляторов необходимо помнить о правилах безопасности и не касаться токопроводящих частей устройства, например вилки ХР2. Чтобы сделать этот процесс более безопасным, можно воспользоваться для зарядки сетевым блоком питания с выходным напряжением 9...12 В и подключать его к батарее GB1 (через контакты 4, 5 разъема XS1) через резистор сопротивлением 470...510 Ом.

Малогабаритный чувствительный металлоискатель

Металлоискатели, основанные на регистрации на биений, оказываются малочувствительными при поисках металлов со слабыми ферромагнитными свойствами, таких как, например, медь, олово, серебро. Повысить чувствительность металлоискателей этого типа невозможно, поскольку разность частот биения малозаметна при обычных методах индикации. Значительный эффект дает применение кварцованных металлоискателей. Металлоискатель, принципиальная схема которого приведена на рис. 4.17, а, состоит из измерительного генератора, собранного на транзисторе VT1, и буферного каскада - эмиттерного повторителя, собранного на транзисторе VT2, отделенных кварцевым резонатором ZQ1 от индикаторного устройства — детектора на диоде VD2 с усилителем постоянного тока на транзисторе VT3. Нагрузкой усилителя служит стрелочный прибор с током полного отклонения 1 мА.

94.jpg

Рис 4 17 Малогабаритный чувствительный металлоискатель

Вследствие высокой добротности кварцевого резонатора малейшие изменения частоты измерительного генератора будут приводить к уменьшению полного сопротивления последнего, как это видно из характеристики, приведенной на рис 4 17, б, а это, в конечном итоге, повысит чувствительность прибора и точность измерений.

Подготовка к поиску заключается в настройке генератора на частоту параллельного резонанса кварца, равную 1 МГц. Эта настройка производится конденсаторами переменной емкости С2 (грубо) и подстроечным конденсатором С1 (точно) при отсутствии около рамки металлических предметов. Поскольку кварц является элементом связи между измерительной н индикаторной частями устройства, его сопротивление в момент резонанса велико и минимальное показание стрелочного прибора свидетельствует о точной настройке устройства. Уровень чувствительности регулируется переменным резистором R8.

Особенностью устройства является кольцевая рамка L1, изготовленная из отрезка кабеля. Центральную жилу кабеля удаляют и вместо нее продергивают шесть витков провода типа ПЭЛ 0,1 -0,2 мм длиной 115 мм. Конструкция рамки показана на рис. 4.17, а. Такая рамка обладает хорошим электростатическим экраном.

Жесткость конструкции рамки обеспечивается размещением ее между двумя дисками из оргетекла или гетйпакса диаметром 400 мм и толщиной 5—7 мм.

В приборе использованы транзисторы КТ315Б, опорный диод — стабилитрон 2С156А, детекторный диод тина Д9 с любым буквенным индексом. Частота кварца может быть в интервале частот от 90 кГц до 1,1 МГц. Кабель — типа РК-50.

Металлоискатель с низкой рабочей частотой

Этот металлоискатель представляет собой относительно простое устройство, и имеет хорошую чувствительность и стабильность работы. Отличительной особенностью такого устройства является его низкая рабочая частота. Катушки индуктивности металлоискателя работают на частоте 3 кГц. Это обеспечивает, с одной стороны, слабую реакцию на нежелательные сигналы (например, сигналы, возникающие при наличии мокрого песка, мелких кусочков металла (металлической стружки) и т.д.), а с другой стороны, хорошую чувствительность при поиске скрытых предметов малого и среднего размеров, а именно металлических коробок, труб, монет и т.п. Прибор также можно использовать при поиске места для оборудования тайника под землей. Он достаточно хорошо обнаруживает скрыгые па глубине водопроводные трубы и трассы центрального отопления

Для реализации и настройки схемы требуется соответствующий навык и опыт, поэтому, если вы недостаточно уверенно себя чувствуете, сначала попробуйте свои силы при изготовлении более простых устройств, описанных выше

Блок-схема металлоискателя приведена на рис. 4.18. Генератор металлоискателя возбуждает колебания в передающей катушке на частоте около 3 кГц, создавая в пей переменное магнитное поле. Приемная катушка расположена перпендикулярно передающей катушке таким образом, что проходящие через нее магнитные силовые линии создают малую ЭДС. На выходе приемной катушки сигнал либо отсутствует, либо очень мал. Металлический предмет, попадая в поле катушки, изменяет значение индуктивности, и на выходе появляется электрический сигнал, который затем усиливается, выпрямляется и фильтруется. Таким образом, па выходе системы имеем сигнал постоянного напряжения, значение которого слегка возрастает при приближении катушки к металлическому предмету. Этот сигнал поступает па один из входов схемы сравнения, где сравнивается с

95.jpg

Рис. 4.18. Блок-схема металлоискателя: 1 — генератор (3 кГц); 2 — дискриминатор; 3 — катушки металлоискателя; 4 — усилитель высокой частоты; 5 — детектор; 6 — фильтр низких частот; 7 — звуковой генератор; 8 — электронный ключ звукового сигнала; 9 — усилитель выходных сигналов; 10 — громкоговоритель; 11 — схема сравнения; 12 — регулируемое опорное напряжение опорным напряжением, которое прикладывается к его второму входу. Уровень опорного напряжения отрегулирован таким образом, что даже небольшое увеличение напряжения сигнала приводит к изменению состояния на выходе схемы сравнения Это в свою очередь приводит в действие электронный переключатель, в результате чего на выходные усилительные каскады поступает звуковой сигнал, оповещающий о присутствии металлического предмета.

Принципиальная электрическая схема металлоискателя представлена на рис. 4.19. Передатчик, состоящий из транзистора VT1 и связанных с ним элементов, возбуждает колебания в катушке L1. Сигналы, поступающие на катушку L2, затем усиливаются микросхемой DD1 и выпрямляются микросхемой DD2, включенной по схеме амплитудного детектора. Сигнал с детектора поступает на конденсатор С9 и сглаживается фильтром низких частот, который состоит из резисторов R14, R15 и конденсаторов С10 и С11. Затем сигнал поступает на вход схемы сравнения DD3, где сравнивается с опорным напряжением, устанавливаемым переменными резисторами R29 и R30. Переменный резистор R30 служит для быстрой и грубой настройки, а R29 обеспечивает точную регулировку опорного напряжения. Генератор, собранный на однопереходном транзисторе VT2, работает в непрерывном режиме, однако сигнал, вырабатываемый им, поступит на базу транзистора VT4 только

96.jpg

Рис 4.19 Принципиальная электрическая схема металлоискателя с низкой рабочей частотой

тогда, когда закроется транзистор VT3, так как, находясь в открытом состоянии, этот транзистор шунтирует выход генератора. При поступлении сигнала на вход микросхемы DD3 напряжение на ее выходе уменьшается, транзистор VT3 закрывается и сигнал от транзистора VT2 через транзистор VT4 и регулятор громкости R31 поступает на выходной каскад и громкоговоритель.

В схеме используются два источника питания, благодаря чему исключается возможность возникновения любой обратной связи выхода схемы с ее чувствительным входом. Основная схема питается от батареи напряжением 18В, которое стабилизатором напряжения DD4 понижается до уровня +12 В. При этом снижение напряжения батареи во время работы схемы не вызывает изменения настройки. Выходные каскады питаются от отдельного источника питания напряжением +9 В. Требования по потреблению мощности довольно низкие, поэтому для питания устройства можно использовать три аккумуляторные батареи. Батарея питания выходного каскада не требует специального выключателя, так как при отсутствии сигнала выходной каскад не потребляет тока.

Сборку схемы металлоискателя следует проводить покаскадно с тщательной проверкой каждого каскада. Проверка источника питания осуществляется путем временного подключения батареи напряжением 18 В. При этом напряжение на конденсаторе С16 должно составлять 12±0,5 В. После этого проводится монтаж элементов выходного каскада: резисторов R23—R26, конденсаторов С14иС15и транзисторов VT4—VT6. Следует учесть, что корпус транзистора VT6 соединен с его коллектором, поэтому контакт корпуса с соседними элементами и перемычками недопустим. Так как выходной каскад при отсутствии сигнала не потребляет тока, его проверяют временным подсоединением громкоговорителя, переменного резистора R31 и батареи напряжением 9 В.

Затем устанавливают резисторы R20 — R22 и транзистор VT2, образующие генератор звуковых сигналов. При подключении двух источников питания в громкоговорителе прослушивается звуковой фон, меняющийся с изменением положения ручки регулятора громкости. После этого на плате монтируют резисторы R16—R19, конденсатор С12, транзистор VT3 и микросхему DD3.

Работа схемы сравнения проверяется следующим образом. К измерительному входу микросхемы DD3 подключают переменные резисторы R29 и R30. Этот вход образуется с помощью двух резисторов сопротивлением 10 кОм, один из которых подключается к положительной шине питания +12 В, а другой — к нулевой. Вторые выводы резисторов подсоединяют к выводу 2 микросхемы DD3. Перемычка от этого вывода служит временной точкой соединения. При грубой настройке (включены обе батареи), которая осуществляется переменным резистором R30, в определенном его положении происходит срыв звукового сигнала, в то время как при точной настройке переменным резистором R29 должно осуществляться плавное изменение сигнала вблизи этого положения. При выполнении этих условий приступают к установке резисторов R6—R15, конденсаторов С6—С11, диода VD3 и микросхем DD1 и DD2.

Включив источник питания, сначала проверяют наличие сигнала на выходе микросхемы DD1 (вывод 6). On не должен превышать половины значения напряжения питания (примерно 6В). Напряжение на конденсаторе С9 не должно отличаться от напряжения выходного сигнала этой микросхемы, хотя наводки от сети переменного тока могут вызвать небольшое увеличение этого напряжения. Касание пальцем входа микросхемы (основания конденсатора С6) вызывает увеличение напряжения из-за повышения уровня шумов. Если регуляторы настройки находятся в положении, при котором звуковой сигнал отсутствует, касание пальцем конденсатора С6 приведет к появлению и исчезновению этого сигнала. На этом предварительная проверка работоспособности каскадов заканчивается.

Окончательная проверка и настройка металлоискателя проводится после изготовления катушек индуктивности. После предварительной проверки каскадов схемы на плате устанавливаются остальные элементы, за исключением конденсатора С5. Переменный резистор R28 временно устанавливается в среднее положение. Плата крепится к L-образному алюминиевому шасси через пластмассовые шайбы (для устранения возможности короткого замыкания).

Штанга и соединительные части, образующие держатель головки металлоискателя, изготавливаются из пластмассовых трубок диаметром 19 мм. Сама головка прибора представляет собой тарелку диаметром 25 см, изготовленную из прочной пластмассы. Внутренняя ее часть тщательно зачищается наждачной бумагой, что обеспечивает хороший контакт при склеивании эпоксидной смолой.

Изготовление катушек металлоискателя требует особого внимания. Катушки, имеющие одинаковую форму и размеры, наматывают на D-образный контур, образованный из штырей, закрепленных на подходящем куске платы (рис. 4.20). Каждая из них имеет 180 витков эмалированного медного провода диаметром 0,27 мм с отводом от 90-го витка. Прежде чем спять катушки со штырей, их в нескольких местах перевязывают. Затем каждая катушка обматывается прочной нитью, чтобы витки плотно прилегали друг к другу. На этом изготовление передающей катушки заканчивается. Приемная же катушка должна быть снабжена экраном.

Экранирование катушки обеспечивается следующим образом. Сначала она обматывается проволокой, а затем обертывается слоем алюминиевой фольги, которая снова обматывается проволокой. Такая двойная обмотка гарантирует хороший контакт с алюминиевой фольгой. В обмотках проволоки и в фольге должен быть предусмотрен небольшой разрыв, или зазор, как показано на рис. 4.20 препятствующий образованию замкнутого витка но окружности катушки.

Изготовленные таким образом катушки закрепляются с помощью зажимов по краям пластмассовой тарелки и подсоединяются к блоку управления при помощи четырехжильного экранированного кабеля. Два центральных отвода и экран приемной катушки подсоединяются к пулевой шине питания через экранирующие провода. Если включить устройство и радиоприемник, расположенный недалеко от катушки, можно услышать высокотональпый свист (на частоте металлоискателя), обусловленный наводкой звукового сигнала в радиоприемнике. Это указывает на исправность генератора металлоискателя. В данном случае неважно, на какой диапазон настроен радиоприемник, поэтому для проверки вместо него можно использовать любой кассетный магнитофон.

Место рабочего положения катушек определяется по выходному сигналу металлоискателя, который должен быть минимальным, либо по показаниям вольтметра, подключенного непосредственно к конденсатору С9.

97.jpg

Рис. 4.20 Головка металлоискателя

Второй вариант для подгонки катушек значительно проще. Напряжение на конденсаторе должно составлять приблизительно 6 В. После этого внешние части катушек приклеиваются эпоксидной смолой, а внутренние, проходящие через центр, остаются незакрепленными, что позволяет провести окончательную настройку.

Окончательная настройка. Установите незакрепленные части катушек в такое положение, при котором предметы из цветного металла, например монеты, вызывают быстрое увеличение выходного сигнала, а стальные предметы — его незначительное уменьшение. Если требуемый результат не достигается, необходимо поменять местами концы одной из катушек. Окончательная настройка Или подгонка катушек должна проводиться при отсутствии металлических предметов. После установки и прочного закрепления катушки покрывают слоем эпоксидной смолы, накладывают на них стеклоткань и все это герметизируют эпоксидной смолой.

После изготовления головки металлоискателя впаяйте конденсатор С5, переменный резистор R27 установите в среднее положение, а переменный резистор R28 настройте на минимум выходного сигнала. При этом по одну сторону среднего положения переменный резистор R27 обеспечивает распознавание стальных предметов, а по другую сторону — предметов из цветного металла. Следует иметь в виду, что при каждом изменении поминального значения сопротивления переменного резистора R27 необходимо проводить повторную настройку устройства.

На практике металлоискатель представляет собой легкое, хорошо сбалансированное, чувствительное устройство. В течение первых нескольких минут после включения устройства может иметь место разбаланс нулевого уровня, однако через некоторое время он исчезнет или станет незначительным.

4.2.7. Индикаторы радиоактивного излучения

В последнее время участились случаи краж радиоактивных элементов с целью переправки за границу и продажи. Обнаружить этот смертоносный груз, даже если он хорошо спрятан в тайнике, помогают специальные приборы, именуемые детекторами, или индикаторами, радиоактивного излучения.

Ниже рассмотрим несколько простых схем таких приборов, пригодных для быстрого повторения и использования.

Индикатор бета- и гамма-излучения

На рис. 4 21 показана схема простого индикатора, фиксирующего даже слабые бета- и гамма-излучения. Датчиком (VL1) служит счетчик Гейгера-Мюллера типа СТС-5 отечественного производства, выпускаемый уже более тридцати лет. Он имеет вид металлического цилиндра длиной около 113 и диаметром 12 мм. Его рабочее напряжение 400 В. Из зарубежных датчиков можно использовать ZP1400.ZP1310 или ZP1320 фирмы Philips.

Прибор питается от одного гальванического элемента напряжением 1,5 В и потребляет ток не более 10 мА. Напряжение -12 В для питания усилителя и высокое напряжение для питания датчика получают от преобразователя на транзисторе VT1. Трансформатор преобразователя Т1 намотан на броневом магни-топроводе диаметром около 25 мм. Обмотка 1-2 имеет 45 витков провода диаметром 0,25 мм, 3-4 — 15 витков того же провода, а 5-6 — 550 витков провода диаметром 0,1 мм. Начала обмоток на схеме отмечены точками.

Преобразователь представляет собой блокинг-генератор. Возникающие на обмотке 5-6 трансформатора Т1 импульсы высокого напряжения выпрямляет высокочастотный диод VD2. Обычные выпрямительные диоды здесь непригодны, так как импульсы слишком коротки, а частота их повторения слишком высока.

Пока излучения нет, на входе усилителя, выполненного на транзисторах VT2 и VT3, напряжение отсутствует и транзисторы заперты. При попадании на датчик бета- или гамма-частиц газ, которым он заполнен, ионизируется и на выходе формируется импульс, который возбуждает усилитель, и из громкоговорителя (телефонного капсюля) BF1 слышен щелчок, светодиод HL1 при этом вспыхивает.

Вне зоны облучения щелчки и вспышки светодиода повторяются через 1 —2 с. Это реакция датчика на космическое излучение и естественный фон Если приблизить датчик к излучающему предмету (старым часам со светящимся циферблатом или шкале авиационного прибора времен войны), щелчки участятся и, наконец, сольются в сплошной треск, а светодиод будет светиться непрерывно. Таким образом можно судить о частоте попадания частиц на датчик, а следовательно, об интенсивности излучения.

В приборе есть и стрелочный индикатор. Переменное напряжение, снимаемое с телефонного капсюля, через конденсатор С5 поступает на двухполу периодный выпрямитель на германиевых диодах VD3, VD4 (они могут быть любого типа).

98.jpg

Рис. 4.21. Индикатор бета и гамма излучения

Выпрямленное напряжение после сглаживания конденсатором С6 через переменный резистор R5 подается на микроамнерметр (РА1). Сопротивление резистора устанавливают таким, чтобы при сильном излучении стрелка микроамперметра не зашкаливала, а при слабом — заметно отклонялась. При необходимости прибор можно проградуировать, сравнивая его показания с измерителем излучения промышленного изготовления. Прибор собран на печатной плате, помещенной в коробку размерами 150х90х40 мм. Датчик размещен в отдельном корпусе и соединен с прибором кабелем с разъемом.

Транзистор VT1 можно заменить па КТ630 с любым буквенным индексом, КТ315Б - на КТ342А. Светодиод может быть АЛ307, АЛ341. В качестве VD2 можно использовать два диода КД104А, соединив их последовательно. Диод КД226 можно заменить на КД105В. Телефонный капсюль следует выбрать с сопротивлением звуковой катушки не менее 50 Ом. Стрелочная измерительная головка может быть выбрана любого типа с током полного отклонения 50 мкА.

Индикатор ионизирующего излучения на микросхемах

Этот индикатор реагирует па суммарный поток ионизирующего гамма-, бета-и альфа-излучепия и, несмотря на чрезвычайную простоту, достаточно надежен в работе. Схема индикатора состоит из преобразователя напряжения и узла измерения (рис. 4.22).

Преобразователь напряжения собран но схеме ключа, коммутирующего индуктивность L1 в цени постоянного тока с выпрямлением и фильтрацией возникающей ЭДС самоиндукции. Задающий генератор с частотой около 700 Гц со-

99.jpg

Рис. 4.22. Индикатор излучения на микросхеме

бран на элементах DD1.1, DD1.2. Поскольку генерируемые импульсы несимметричны, то для повышения экономичности используется, после инвертирования, более короткая отрицательная полуволна импульса Выпрямленное диодом VD1 и отфильтрованное конденсатором С2 напряжение (около 380 В) через нагрузочный резистор подается на счетчик ионизирующего излучения Гейгера-Мюллера VL1 Необходимо отметить, что изменение выходного напряжения преобразователя, вызванное нестабильностью источника питания, мало влияет на точность измерений. В данном случае для счетчика типа СТС-5 изменение входного напряжения может составлять около 90 В.

Возникающие на резисторе R3 короткие положительные импульсы через буферный инвертор DD1.4 подаются на эмиттерный повторитель VT2. Конденсатор СЗ служит для подавления наводок от генератора-преобразователя напряжения. Нагрузкой повторителя является динамическая головка ВА1 и све-тодиод HL1 Амплитуда импульса тока через светодиод и головку определяется внутренним сопротивлением источника питания и сопротивлением коллектор-эмиттер транзистора VT2. А так как управляющие импульсы с элемента очень короткие, то средний потребляемый прибором ток при естественном фоне определяется лишь током, потребляемым преобразователем напряжения При повышении уровня радиации до 0,1 мР/час (и соответственно увеличении частоты импульсов) средний потребляемый ток возрастает, поэтому для большей экономичности динамическую головку переключателем SB1 можно отключать.

Узел измерения уровня радиоактивности представляет собой простейший аналоговый частотомер, собранный на элементах DD2.1, DD2.2. Индикатором служи! микроамнерметр РА1 Схема узла включает ждущий мультивибратор, управляемый импульсами с инвертора DD1.4. Точность измерений обеспечивается питанием схемы от параметрического стабилизатора VD3R11. Кнопка SB2 служит для переключения микроамперметра на контроль напряжения питания через гасящий резистор R10. Пределы измерения коммутируются нереключаге-лем SA1.2 путем коммутации времязадающих резисторов R6—R8.

Индикатор может быть собран как со схемой измерения, так и без нее В последнем случае исключаются элементы DD2.1, DD2 2, РА1 Если использовать малогабаритные детали, а для определения уровня радиоактивности оставигь голько светодиод, то размеры индикатора не превысят габариты двух батарей типа «Крона»

Счетчик VL1 может быть заменен па СБМ-10, СБМ-20, СБМ-21, СТС и др Транзистор VT1 — на КТ605, транзистор VT2 — на любой маломощный кремниевый соответствующей структуры. Измерительная головка РА1 типа М4205 с током полного отклонения 100 мкА (но может быть и любая другая с током полного отклонения не более 300 мкА). Катушка L1 намотана на двух сложенных вместе ферритовых кольцах М2000НМ типоразмера К20х12х6 и содержи! 200 витков провода ПЭЛШО 0,26 мм, индуктивность около 240 мГ

Налаживание индикатора несложно. Прежде всего, необходимо собрать входной делитель вольтметра для измерения высокого напряжения (см. рис 4 22) Поскольку выходной ток преобразователя напряжения очень мал, используемый вольтметр должен иметь входное сопротивление не менее 10 МОм

Подключив делитель к конденсатору С2, изменением сопротивления резистора R1 установите выходное напряжение около 380...400 В. Если прибор используется как индикатор, то настройка на этом заканчивается.

При использовании индикатора в качестве измерительно!^ прибора, необходимо отградуировать стрелочную головку. При этом можно исходить из того, что зависимость числа импульсов на выходе счетчика Гейгера-Мюллера от уровня радиоактивности линейна. Если точно подобрать сопрогивление времязадающих резисторов R6—R8, то откалибровать индикатор можно лишь в одной точке шкалы. Делается это так. Расположив индикатор рядом с датчиком образцового заводского прибора, определите уровень фона в данной местности. Допустим, он составляет 0,003 мР/час. Изменением сопротивления подстроечного резистора R8 установиге стрелку РА1 на деление «ЗО» (при шкале 0—100 мкА). На этом калибровка заканчивается. Здесь, однако, необходимо учесть одно обстоятельство. Из-за наличия у счетчика собственного фона, последний может внести погрешность при калибровке на поддианазоне О...0,1 мР/час. Поэтому, если есть возможность, калибровку лучше проводить при повышенных уровнях фона, но и в первом случае точность индикатора измерителя будет достаточной для практических измерений. Включив вместо резистора R10 подсгроечпый, при нажатой кнопке SB2 усгановите сгрелку микроамперметра на значение, соответствующее напряжению питания, и замените резистор на постоянный. На этом налаживание закапчивается.

Индикатор радиационный

• Прибор предназначен для непрерывного контроля общей радиационной обстановки и обнаружения источников ионизирующей радиации.

Принципиальная схема прибора изображена на рис. 4.23. Функцию датчика ионизирующей радиации VL1 выполняет счетчик Гешера 1ина СБМ-20. Высокое напряжение па его аноде формирует блокинг-генерагор, собранный па трансформаторе Т1. Импульсы напряжения с повышающей обмогки I через диоды VD1, VD2 заряжают конденсатор фильтра С1. Нагрузкой счетчика служат резистор R1 и другие детали, связанные со входом 8 элемента DD1.1.

Элементы DD1.1, DD1.2, конденсатор СЗ и резистор R4 образуют одновибратор. Он преобразует импульс тока, возникающий в счетчике Гейгера в момент возбуждения его ионизирующей частицей, в импульс напряжения длительностью 5...7 мс.

Элементы DD1.3, DD1,4, копденсагор С4 и резистор R5 представляют собой управляемый (но входу 6 элемента DD1.3) генератор колебаний звуковой частоты, к парафазному выходу которого (выводы 3 и 4 элементов DD1.4, DD1.3) подключен ньезоизлучатель ВА1. В нем акустический импульс-щелчок возбуждается пачкой электрических импульсов.

На диоде VD4, резисторах R8—R10 и конденсаторах С8, С9 собран интегратор, управляющий работой порогового усилителя DD2. Напряжение на конденсаторе С9 зависит ог средней частоты возбуждения счетчика Гейгера — при достижении его значения соответствующему напряжению открывания полевого транзистора, входящего в микросхему DD2, включается свегодиод HL1. Частота и длительность вспышек светодиода увеличиваются с повышением уровня радиации.

Подключив делитель к конденсатору С2, изменением сопротивления резистора R1 установите выходное напряжение около 380...400 В. Если прибор используется как индикатор, то настройка на этом закапчивается.

При использовании индикатора в качестве измерительно! о прибора, необходимо отградуировать стрелочную головку. При этом можно исходить из того, что зависимость числа импульсов на выходе счетчика Гетера-Мюллера от уровня радиоакгивности линейна. Если точно подобрать сопрогивление времязадающих резисторов R6—R8, то откалибровать индикатор можно лишь в одной точке шкалы. Делается это так. Расположив индикатор рядом с датчиком образцового заводского прибора, определите уровень фона в данной местности. Допустим, он составляет 0,003 мР/час. Изменением сопротивления подстроечного резистора R8 установив стрелку РА1 па деление «ЗО» (при шкале 0—100 мкА). На этом калибровка закапчивается. Здесь, однако, необходимо учесть одно обстоятельство. Из-за наличия у счетчика собственного фона, последний может внести погрешность при калибровке на поддианазопе О...0,1 мР/час. Поэтому, если есть возможность, калибровку лучше проводить при повышенных уровнях фона, но и в первом случае точность индикатора измерителя будет досгаточпой для практических измерений. Включив вместо резистора R10 подсгроечный, при нажатой кнопке SB2 усгановите сгрелку микроамнермегра па значение, соогветствующее напряжению питания, и замепиге резистор на постоянный. На этом налаживание заканчивается.

Индикатор радиационный

Прибор предназначен для непрерывного контроля общей радиационной обстановки и обнаружения источников ионизирующей радиации.

Принципиальная схема прибора изображена на рис. 4.23 Функцию дагчика ионизирующей радиации VL1 выполняет счетчик Гейгера тина СБМ-20. Высокое напряжение па ею аноде формирует блокинг-генератор, собранный па трансформаторе Т1. Импульсы напряжения с повышающей обмогки I через диоды VD1, VD2 заряжаю! конденсатор фильтра С1. Нагрузкой счетчика служат ре-зис-юр R1 и другие детали, связанные со входом 8 элемента DD1.1.

Элементы DD1.1, DD1.2, конденсатор СЗ и резистор R4 образуют одновиб-ратор. Он преобразует импульс тока, возникающий в счетчике Гейгера в момент возбуждения его ионизирующей частицей, в импульс напряжения длительное! ью 5. .7 мс

Элементы DD1.3, DD1,4, копденсаюр С4 и резисюр R5 нредсгавляют собой управляемый (по входу 6 элемента DD1 3) генератор колебаний звуковой частоты, к парафазному выходу которого (выводы 3 и 4 элементов DD1.4, DD1.3) подключен пьезоизлучатель ВА1 В нем акустический импульс-щелчок возбуждается пачкой электрических импульсов.

На диоде VD4, резисторах R8—R10 и конденсаторах С8, С9 собран интегратор, управляющий работой порогового усилтеля DD2 Напряжение па конденсаторе С9 зависит or средней час готы возбуждения счетчика Гейгера — при достижении его значения соответствующему напряжению открывания полевого транзистора, входящего в микросхему DD2, включается свегодиод HL1. Часто га и длительность вспышек свегодиода увеличиваются с повышением уровня радиации.

910.jpg

Рис. 4.23. Радиационный индикатор

Детали прибора смонтированы на печатной плате, изготовленной из двухстороннего стеклотекстолита толщиной 1,5 мм. Фольга со стороны установки деталей используется лишь как общий заземленный проводник. Конденсатор С1 типа К73-9, С2 - КД-26, С5 - К53-30 или К53-19. В случае замены их конденсаторами других типов следует иметь в виду, что утечки здесь могут резко увеличить энергопотребление прибора, что, конечно, нежелательно. По этой же причине ограничен и выбор диодов VD1 и VD2: обратный ток этих диодов является нагрузочным для высоковольтного преобразователя и не должен превышать 0,1 мкА. Конденсаторы С7 и С10 — тина К50-40 или К50-35, остальные - К10-17-26 или КМе. Резистор R1 - КИМ или СЗ-14, R2-R12 -МЛТ, С2-33 или С2-23.

Микросхема DD1 может быть типа К561ЛА7. Диод КД510А можно заменить любым другим кремниевым с током в импульсе не менее 0,5 А. Светодиод годится практически любой, критерий здесь — достаточная яркость. Двухкристальный пьезоизлучатель ЗП-1 может быть заменен однокристальным с акустическим резонатором ЗП-12, ЗП-22 или ЗП-3.

Без заметных изменений потребительских свойств и каких-либо переделок в приборе можно использовать счетчик СТС-5, СБМ32 или СБМ32К и другие счетчики Гейгера.

Импульсный трансформатор Т1 высоковольтного преобразователя напряжения наматывают на ферритовом кольце МЗОООНМ типоразмера К16х10х4,5, предварительно покрытом тонкой лентой из лавсана или фторопласта. Первой наматывают обмотку I — 420 витков провода ПЭВ-2 0,07 мм. Провод укладывают виток к витку в одну сторону, оставляя между началом и концом обмотки промежуток 1—2 мм. Далее, покрыв обмотку I слоем изоляции, наматывают обмотку 11—8 витков провода диаметром 0,15—0,2 мм в любой изоляции, и поверх нее обмотку III — 3 витка такого же провода. Провод этих обмоток также должен быть возможно равномернее распределен по магнитопроводу.

Готовый трансформатор, покрытый слоем гидроизоляции, например обмотанный узкой полоской ленты ПХЛ, крепят на плате винтом МЗ между двумя эластичными шайбами.

Прибор не требует наладки — правильно собранный, он начинает работать сразу. Но есть в нем два резистора, номиналы которых, возможно, потребуется уточнить. Это резистор R5, подбором которого регулируют частоту звукового генератора так, чтобы она соответствовала частоте механического резонанса пье-зоизлучателя, и резистор R8, номинал которого определяет порог срабатывания тревожной сигнализации. Коррекция порога тревожной сигнализации может потребоваться при перенастройке прибора для работы в условиях повышенного радиационного фона. Прибор прост в обращении и Йе требует от владельца какой-либо специальной подготовки. Редкое пощелкивание акустических импульсов, следующих один за другим без видимого порядка', отсутствие тревожной сигнализации (вспышек светодиода) говорят о том, что прибор находится в условиях естественного радиационного фона. Это фоновое пощелкивание почти не зависит от времени суток, сезона и местоположения прибора, несколько замедляясь лишь глубоко под землей и ускоряясь в высокогорье.

Увеличение скорости счета при перемещении прибора, а тем более, срабатывание тревожной сигнализации дает достаточные основания полагать, что прибор находится в районе источника радиации искусственного происхождения. Положение этого источника, его габариты, связь с тем или иным видимым предметом можно определить либо поворотами прибора (он имеет максимальную чувствительность со стороны счетчика Гейгера), либо его перемещением — направление на источник определяют но увеличению скорости счета.

При поиске источника радиации, размеры которого значительно меньше самого счетчика Гейгера, рекомендуется проводить сканирование подозрительных мест — перемещать прибор, меняя направление его движения и ориентацию. Таким образом, положение невидимого простым глазом источника радиоактивности можно определить с точностью до 2...3 мм.

Порог срабатывания тревожной сигнализации в приборе устанавливается чуть выше естественного радиационного фона со всеми возможными его отклонениями от среднего значения. Лишь очень немногие причины, не связанные с появлением источников радиации искусственного происхождения, могут вывести его в режим тревожной сигнализации (из общедоступных — полеты на большой высоте).